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Rational Dimensia is a comprehensive examination of three questions: What is a dimension? Does
direction necessarily imply dimension? Can all physical law be derived from geometric principles?
A dimension is any physical quantity that can be measured. If space is considered as a single
dimension with a plurality of directions, then the spatial dimension forms the second of three axes in
a Dimensional Coordinate System (DCS); geometric units normalize unit vectors of time, space, and
mass. In the DCS all orders n of any type of motion are subject to geometric analysis in the space-
time plane. An nth-order distance formula can be derived from geometric and physical principles
using only algebra, geometry, and trigonometry; the concept of the derivative is invoked but not
relied upon. Special relativity, general relativity, and perihelion precession are shown to be geometric
functions of velocity, acceleration, and jerk (first-, second-, and third-order Lorentz transformations)
with v2 coefficients of n! = 1, 2, and 6, respectively. An nth-order Lorentz transformation is
extrapolated. An exponential scaling of all DCS coordinate axes results in an ordered Periodic
Table of Dimensions, a periodic table of elements for physics. Over 1600 measurement units are
fitted to 72 elements; a complete catalog is available online at EPAPS. All physical law can be derived
from geometric principles considering only a single direction in space, and direction is unique to the
physical quantity of space, so direction does not imply dimension.

I. INTRODUCTION

What is a dimension? Does, as Edwin Abbott puts
forth in his 1884 novella Flatland, “direction imply
dimension”?1 Can all physical law be derived from ge-
ometric principles as Minkowski predicts?2 To answer
these questions one must first consider the myriad of myr-
iad of different measurements mankind has used through-
out history. Which are unique dimensions and which are
redundant? Not only are there scores of dimensia (n, pl
1: the plural of sets of dimensions, i.e., money, monies):
SI, mks, cgs, etc., but within each system there are nu-
merous quantities that express the same dimensionality.
For length one could measure a wavelength, or a path
length, or a radius, or a diameter—and in the SI system
one could even measure an energy and choose to call it
a temperature. It is this dimensia (n, pl 2: the minutiae
of dimensions) that frustrates the researcher of geometric
relations between the dimensions. It is the thesis of this
article that these dimensia can be rationalized, and with
that rationalization, the underlying geometric relations
are revealed.

By characterizing space as a single dimension with
a plurality of directions and building on its one-to-one
equivalence with time in the space-time plane, a Dimen-
sional Coordinate System (DCS) composed of the three
physical dimensions mass m, space d, and time t can be
constructed. Within that construction, kinematic and
relativistic effects are examined and expanded beyond
current knowledge, based purely on geometric principles
and the constancy of the speed of light. Validation of m
as a third axis is provided in the form of an exponential
scaling of the coordinate axes, resulting in an ordered Pe-
riodic Table of Dimensions. Within this table over 1600
units of measurement have been fit to 72 elements, and
both arithmetic and geometric methods of dimensional

analysis can be applied to all. The power and efficiency of
dimensional analysis make it an extremely valuable tool
for the sciences.3–5 It is the proposition of this author
that all physical measurements can be expressed and an-
alyzed in the terms of the Periodic Table of Dimensions.

II. CONTRACTION OF THE SPACE METRIC

Pluralitas non est ponenda sine necessitate:
Plurality should not be posited without neces-
sity.

-Occam’s Razor

A. Physical metrics

Consider the Pythagorean distance formula

x2 + y2 = d2, (1)

illustrated in Fig. 1(a), which gives the magnitude of the
space metric d in two directions. Given three spatial
axes, this Euclidean metric is expanded to express the
magnitude

x2 + y2 + z2 = d2 (2)

of a spatial three-vector. The spatial three-vector is
shown in comparison to the spatial two-vector in Fig.
1(b). The scalar magnitude d2 is the starting point of
most commonly cited discussions of relativity.2,6–11 The-
oretically, the space metric can be expanded to include
any number of components, but practical geometric rep-
resentations of four or more mutually orthogonal compo-
nents seem to be nonexistent.



2

(b)(a) yz dd xx yd d xy 2 23

(b)(a) yz dd xx yd d xy 2 23 (b)(a) yz dd xx yd d xy 2 23
FIG. 1: The space metric d in (a) two and (b) three directions.

In consideration of physical phenomena, the distance
given by the space metric can be set equal to the distance
light travels in one second, i.e., 3×108 meters. Algebraic
manipulation of the dimensional relation for light speed
c = d/t gives

d2 = c2t2 (3)

so that

x2 + y2 + z2 = c2t2, (4)

as presented by Einstein and others.8,9,12,13 Note that in
Eq. (3), t2 could just as easily be the isolated variable,
leaving d2/c2 expressed in square seconds.14,15

Collecting both the three-component term for space
and the term for time from Eq. (4) on either side of the
equal sign gives two equally valid expressions:

x2 + y2 + z2 − c2t2 = 0 (5a)

and

c2t2 − x2 − y2 − z2 = 0. (5b)

These two forms impart antisymmetric metric signa-
tures of (+,+,+,−) and (+,−,−,−), respectively, to
the components.2,6,9,10,12,13,16 For the purposes of this
discussion, the (+,−,−,−) metric is employed unless
otherwise noted; both are prevalent throughout the
literature.2,6,7,9–24

When these expressions are equal to zero, as in Eqs.
(5a) and (5b) and as shown by the line labeled c in Fig.
2, the interval is called lightlike.6,12,25,26 Only phenom-
ena propagating at the speed of light can take place over
lightlike intervals. Intervals other than those accessible
only at light speed can be considered by letting the re-
sult of Eqs. (5a) or (5b) vary. Designating the interval
given by these expressions as s, and limiting the discus-
sion to infinitesimal local frames of reference, gives the
scalar length of a worldline in the familiar form of the
space-time metric:

c2dt2 − dx2 − dy2 − dz2 = ds2. (6)

before afterbehindin frontd tspacelikespaceliketimelike timelike clightlikelightlike

before afterbehindin frontd tspacelikespaceliketimelike timelike clightlikelightlike before afterbehindin frontd tspacelikespaceliketimelike timelike clightlikelightlike
FIG. 2: The timelike and spacelike hyperbolae of space-time
separated by lightlike asymptotes.

Whether infinitesimal or not, when s2 is greater than
zero (positive), the interval is called timelike and can be
anywhere in the areas labeled timelike in Fig. 2; when s2
is less than zero (negative), the interval is called space-
like and can be anywhere in the areas labeled spacelike
in Fig. 2.2,6,12,18,25–28 Physical interactions can occur in
timelike intervals; only physical separation can occur over
spacelike intervals.

Consideration of a spacelike interval c2t2 − x2 − y2 −
z2 = −s2 implies imaginary coordinates. Some have
suggested2,9,10,22 that this imaginary coordinate origi-
nates as a coefficient of either the term for space, i.e.,
(id)2 = i2(x2 + y2 + z2), or the term for time, i.e.,
(ict)2. Others, such as Misner, Thorne, and Wheeler
point out, “This imaginary coordinate was invented to
make the geometry of space-time look formally as lit-
tle different as possible from the geometry of Euclidean
space.”6,25 This is demonstrated by the similarity of the
two general forms for a spatial two-vector in imaginary
space, (ct)2 + (id)2 = s2 and (ict)2 + (d)2 = s2, to the
Pythagorean distance formula in Eq. (1).

But space-time is not imaginary; space-time is real and
hyperbolic.2,10,13,16,19,26–30 Intervals are not given by the
sum of squares, but by the difference of squares—the
squares of real numbers. The only imaginary term oc-
curs in s, which is imaginary only when the difference of
real coordinates is negative, i.e., spacelike, resulting in
a 90-degree rotation of the hyperbolic axes. Figure 2 il-
lustrates the hyperbolic asymptotes of time and space,
and their relation to the asymptotic light speed axis.
When the difference of the squares is negative, the re-
sult is −(s)2, the root of which is is. This does not result
from either the term for space or the term for time being
less than zero, but from the ratio of d/t referred to in Eq.
(3) exceeding the value of light speed c.

Equation (6) is the rectangular form of the space-
time metric, which is equivalent to Eq. (5a) when the
(+,+,+,−) metric is employed.2,6,7,9–14,16,19,20,22 Other
forms of the space-time metric frequently found in the
literature include the metric tensor gµν introduced by
Einstein in the general theory. This is commonly pre-
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sented in matrix form,

ds2 = gµν =

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (7)

or with the shorthand notation diag(+1,−1,−1,−1),
with all signs reversed in the case of the (−,+,+,+)
metric.6,10,12,17,18,21–23 (By convention time is assigned
to the zeroth of a 0-3 index here, rather than the fourth
of 1-4.) In tensor notation the interval of the space-time
metric is given by the relation

ds2 = gµνdx
µdxν , (8)

where the superscripts µ and ν are indices of 0, 1, 2, 3
rather than exponents, and Einstein’s summation con-
vention is applied.6,7,9–12,20,21,31,32

Two significant polar forms of the space-time metric
also warrant mention. The first is the Schwarzschild met-
ric equation

ds2 = c2dt2(1− 2m/r)− dr2

(1− 2m/r)
−r2(dθ2 + sin2 θ dφ2), (9)

where r, θ, and φ are spherical coordinates, and m =
GM/c2 where G is the gravitational constant and M
is the total mass of the system; the condition where
r = 2m, so that the term 1 − 2m/r goes to zero, is the
Schwarzschild radius; an object of mass m smaller than
its Schwarzschild radius is a black hole.7,33–35 The second
polar form that should be mentioned is

ds2 = c2dt2 − dr2 − r2dφ2 − dz2, (10)

where r, θ, and z are cylindrical coordinates of flat
Minkowski space-time in string theory.33

No matter the form, the scalar interval given by s2 is
the space-time metric. In a grammatical sense all these
forms are synonymous; they are many ways of saying the
same thing. The s2 resulting from any one form of the
space-time metric is the same s2 given by any other form
for the same interval, and when any transformation s′

that conforms to the postulates of relativity is applied,
s2 = (s′)2. The space-time metric expresses space-time
increments equivalently with respect to any inertial ref-
erence frame, a property called invariance. While direc-
tion can be determined from initial values, the space-time
metric gives the scalar length of a worldline without re-
gard to direction, while the linear velocity vector, with
tangent d/t, always gives the direction.

B. Space-time equivalence

In the special theory of relativity, Einstein sets space
and time equal, t = x = y = z = 0, treating t, x, y,

and z as equivalents, to the point of melding them into a
single space-time continuum.8 Both Minkowski and Weyl
also contend that time is on equal footing with the three
directions of space,2,11 which permits identical treatment
of the four coordinates x, y, z, and t. And in Edwin Ab-
bott’s Flatland, A. Square, the two-dimensional narrator
of the story, remarks to Lord Sphere of three-space that
“dimension implies direction and measurement.”1 Con-
sidering the context, this last statement begs the ques-
tion, exactly how many directions does dimension imply?
Two, as in Flatland? Three, as in Lord Sphere’s world?

Typically, relativistic systems6–9,12,13,18,25,33,36 consist
of the three directions, x, y, and z. When three directions
are given, almost without exception, y and z are simply
set to zero and all events are considered to occur along the
x-axis. As can be seen from the Lorentz transformations
in three directions,

t′ =
t− vx

c2√
1− v2

c2

(11)

x′ =
x− vt√
1− v2

c2

(12a)

y′ = y (12b)

z′ = z, (12c)

considering y and z has absolutely no effect on the physics
whatsoever.8–10,12,37 The limitation lies in the difficulty
of geometrically representing four directions, all at right
angles to each other. Ohanian6 addresses this limitation
by simply omitting the z-coordinate in constructing the
light cone t2−x2−y2 = 0, while Muller38 finds it revealing
to assign y to the spin axis and proceed in t, x, and z.

For the system of one spatial direction the space axis is
simply d, the composition of the spatial axes of a multi-
directional system as defined in Eqs. (1) and (2) and il-
lustrated in Fig. 1. Cook says it most succinctly when
he notes that it is the proportion of d`, a composition of
the x, y, and z directions, to time that places the speed
of light at the invariant value c in all directions, and
gives the space-time metric in one spatial direction as
ds2 = −c2dt2 + d`2, albeit with the (−,+,+,+) metric.7
Some, including Minkowski, disregard y and z for the
sake of simplicity.2,12,24,26,27 Others, including Pierseaux,
who quotes Poincaré extensively on this subject, point to
the arbitrariness of the x-axis and use the convention of
assigning to space a single direction defined by the linear
velocity vector.16,36 In the end it all boils down to one
direction in space at any one instant in time.

The addition of directions to the dimension of space
conserves the dimensionality of each direction in the
nonlinear proportion of the sum of squares. Since all
forms of the space-time metric are equivalent, consid-
eration of the rectangular form in Eq. (6) is equivalent
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to consideration of any of the other forms, including
those presented in Eqs. (7) through (10). Extrapolat-
ing the pattern given by the rectangular forms for spa-
tial dimensions of one, two, and three directions gives
d2 = x2,= x2 + y2,= x2 + y2 + z2,= x2 + y2 + z2 + · · · .
The relationship of the terms for space and time are such
that the sum of the squares of the spatial directions, i.e.,
Eq. (2), is proportionate to the square of the single term
for time c2t2. If x, y, and z were each individually of the
same physical nature as time, then the proper propor-
tions would be ct : x, ct : y, and ct : z rather than ct : d.
Geometrically, the composition of directions is Euclidean,
but the composition of space-time is hyperbolic. Numer-
ically, this inequivalence of direction to time varies with
the number of directions considered and reaches the fol-
lowing maxima when distances in each of the directions
considered are set equal to each other:

ct : d(x) = 1 : 1 (13a)

ct : d(x, y) = 1 :
1√
2

= 1 : 0.707 (13b)

ct : d(x, y, z) = 1 :
1√
3

= 1 : 0.577 (13c)

ct : d(w, x, y, z) = 1 :
1√
4

= 1 : 0.5 . . . (13d)

It is a fundamental proposition of this paper that space
is a single dimension, equivalent to time, with three (more
or less) directions. Corollary to that, direction is not
equivalent to dimension, as demonstrated in the Lorentz
transformations, Eqs. (11), and (12a) through (12c). Ge-
ometrically, the space-time metric represents the length
of a worldline in a two-axis coordinate system composed
of a single time axis and a single space axis. The space
axis is a Pythagorean composition of the three (more or
less) spatial directions x, y, and z, as in Eq. (2), aligned
along the axis of linear motion. Only the axis paral-
lel to linear translation is affected in the same manner
as time. If space is considered as a single dimension of
equal standing to time, with three (more or less) direc-
tions, the hyperbolic identity of distance x2 − y2 = s2

holds true for a worldline in two-dimensional space. Brill
and Jacobson28 provide a very enlightening discussion
of this x2 − y2 = s2 geometry that also includes a dif-
ference of squares geometric proof in the manner of the
Pythagorean prooof illustrated as x2 + y2 = d2 in Fig. 1.
This is the geometry of relativity.

The composition of spatial directions is independent of
any absolute direction in an inertial reference frame con-
sidered to be at rest. As Einstein notes in one popular
exposition on relativity, “the most careful observations
have never revealed such anisotropic properties in ter-
restrial physical space, i.e., a physical nonequivalence of
different directions.”9,39 In other words, no experiment

has been done that can identify an x direction indepen-
dently of the y or z directions. However, when involv-
ing kinematics, special relativity shows that there exists
a geometrically preferred direction along the axis of uni-
form linear translation, also known as the velocity vector.
Convention assigns this to the x-axis in the Lorentz trans-
formations for space, Eqs. (12a) through (12c), but by
Lorentzian definition the dynamics of space and time are
not affected along the y and z axes only because motion
does not occur along the y and z axes, i.e., y = 0, z = 0.
But if no particular direction can be identified as the x
direction, then applying the velocity vector specifically
to the x-axis is completely arbitrary.16,36

Relativistic contraction in space occurs only in the
direction of linear motion. Neither x, nor y, nor z
matters—only the direction of velocity v contracts. Then
any space-time metric taken in the direction d, defined
by the velocity vector, can be said to be in contracted
form. The contraction is also grammatical in nature in
that the term for space is “shortened by omission” (Web-
ster’s: contraction) of extraneous directions. The space-
time metric then becomes a simple two-vector in a space-
time plane that conforms to hyperbolic plane geometry
as the magnitude

s2 = c2t2 − d2 (14)

with a slope given by the velocity

v =
d

t
. (15)

Pythagorean contraction of the space metric should not
be confused with a tensor contraction of the space-time
metric as discussed by Jackson and Ohanian, in that
the rank of the remaining space-time matrix is only re-
duced by one.6,12 This Pythagorean contraction derives
its name purely from the physical phenomenon associ-
ated with it. The space metric d, on its own, is reduced
in rank from a 32 matrix to a 30 matrix, and accordingly
some directional information, i.e., x, y, z, but not v, is
lost. However, no dimensional information is lost. The
full tensor contraction of the space-time metric from a
42 matrix to a 40 matrix results in the scalar s2; d and t
have direction, s does not.

C. Orientation

When using the contracted space metric, i.e., Eq. (2),
to express the velocity vector in Eq. (15), some rational
tenets of geometric analysis require revisiting. First and
foremost, the slope of a line is its rise over run. If v is to
be the slope of a line as in Eq. (15), then the rise is d,
and the run is t. The general geometric statement, with
the slope given as m in the xy-plane, is

m =
y

x
, (16)
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or as expressed in slope-intercept form, where b is the
y-intercept:

y = mx+ b. (17)

Substituting t for x, d for y, and v for m in Eq. (16)
gives Eq. (15), also equivalent to Eq. (17) when b is set to
zero. Another frequently invoked property of the velocity
vector is that its angle θ from the t-axis is given by the
inverse tangent of the velocity, or conversely25,26,30,40

tan θ =
d

t
, (18)

and

tan θ =
y

x
. (19)

Given Eqs. (16), (18), and (19), it seems more rational
to propose that t goes to the x-axis and d goes to the
y-axis than the contrary.

Traditionally, for reasons unspecified, time has been
assigned to the y-axis.2,6,12,15–17,19,25–30,41,42 Some excep-
tions have been noted, but no rationale seems to be given
for these exceptions.42–44 However, in a chapter on kine-
matics in one dimension, Ohanian conducts an analysis
of worldlines that includes approximations of a curved
worldline as the derivative v = dx/dt, which is a tan-
gent line with slope (x2 − x1)/(t2 − t1) = ∆x/∆t taken
between any two infinitesimally separated points on the
worldline.45 In order to show the algebraic relation of the
slope, the tangent, and the derivative to the space-time
plane, a.k.a. the xy-plane, the t-axis is made the horizon-
tal axis. This is the standard that should be practiced
with the same implications as maintaining the orienta-
tion of the y-axis to the x-axis in any Cartesian system.

Any system can consider itself to be at rest. Any sta-
tionary system, i.e., v = 0, will have a velocity vector
parallel to the resting system’s t-axis. The direction of
the t-axis defines the state of a system at rest. Since
any system may be considered at rest, every system has
a defined t-axis. When v = 0 the space-time metric in
Eq. (14) and the t-axis are parallel because only the t
term contributes to the s term; every measurement takes
some finite amount of time. Any system in uniform mo-
tion, i.e., v > 0, will have a velocity vector at an angle to
the t-axis of the resting system. The velocity vector in
the resting system is parallel to the t-axis of the system
with velocity v; any system can consider itself at rest.

The space metric of the system with velocity v, in its
proper orientation, is always taken to be in the direction
of motion; the t-axis of the (resting) system measuring
v is by definition at an angle of tan−1v clockwise from
the direction of motion. The d-axis is always perpen-
dicular to the t-axis.18,21 Making d the functional axis,
secondary to time, in a right-handed system, facilitates
the treatment of space-time in accordance with all the
accepted rules and methods of geometric analysis in any
xy-plane.

D. The mass axis

Contraction of the space metric reduces a four dimen-
sional problem to one of two dimensions. As discussed
in Sec. II A, practical geometric representations of four
or more components orthogonal to each other seem to be
nonexistent. However, the representation of three orthog-
onal components as x, y, and z is very familiar. Contract-
ing the space metric not only simplifies the space-time
metric, but also results in a free axis within the confines
of familiar three-vector mathematics. It would be nice
if there were a third vector quantity to be represented
by that free z-axis. Preferably this quantity would be
dimensional so as to obey certain, yet to be determined,
fundamental physical laws of dimensions also applicable
to space and time. It should also be related to space-time
in a right-hand manner just as space is related to time.
Also, there must be some transformation, such as Eq.
(3), that relates units on this new axis to the geometric
units on the t- and d-axes.

The Planck units provide the transformation necessary
to express mass as a geometric quantity on the third axis.
The Planck units for time tP, space dP, and mass mP are

t2P =
~G
c5

(20a)

d2
P =

~G
c3

(20b)

m2
P =

~c
G
, (20c)

where ~ is Planck’s constant h divided by 2π, and G is
the gravitational constant. The relations between these
are

ctP = dP =
mPG

c2
, (21)

so that d2
P/t

2
P = c2 as given in Eq. (3), and the unit vec-

tors relating a three-axis system of physical dimensions
on the Planck scale are17

tP = ctP (22a)

dP = dP (22b)

mP =
mPG

c2
, (22c)

which go to the axes traditionally labeled as x, y, and z,
respectively. The Pythagorean magnitude d of the space
metric given by d2 = x2 + y2 + z2 is then analogous to
the magnitude r of the Pythaogrean dimensional metric:

r2 = (ct)2 + (d2
x + d2

y + d2
z) +

(
mG

c2

)2

; (23)
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whereas the Minkowskian dimensional metric is of the
form

s2 = t2 − d2 ±m2, (24)

with the ± nature of m to be left to future explorations.
All of the rules applying to three-directional geometric
analysis, as well as the rules applying to dimensional
analysis, are equally applicable in this three-dimensional
system of coordinates.

III. THE DIMENSIONAL COORDINATE
SYSTEM

The whole universe is seen to resolve itself
into similar world-lines, and I would fain an-
ticipate myself by saying that in my opinion
physical laws might find their most perfect ex-
pression as reciprocal relations between these
world-lines.

-H. Minkowski2

A. The prime dimensions

Physical units can be assigned to the coordinate axes
by the following relations, when the measurements of t,
d, m, and the physical constants c and G are in SI units:

t = ct meters (25a)

d =
√
d2

x + d2
y + d2

z meters (25b)

m =
Gm

c2
meters. (25c)

These relations express the scale for the physical inter-
pretation of geometric analyses in the Dimensional Co-
ordinate System (DCS). The quantities t, d, and m are
unit vectors analogous to i, j, and k, respectively, in a
Cartesian coordinate system. Using each of the funda-
mental dimensions as the unit dimension, three different
scale factors can be derived, as shown in Table I along
with the Planck scale. Each of these physical scale factors
is equally valid and will lead to the same conclusions, as
will any proper interpolation between them. Therefore,
all of the following sets of physical relations are referred
to as geometric units.17 If there is a need, the unit axis,
i.e., t = 1, d = 1, or m = 1, can be so designated.

There is a unique geometric description in the Dimen-
sional Coordinate System for every measurable quantity.
The graph of each unit quantity is a straight line, either
coincident with or parallel to its coordinate axis, with
each unit vector mutually perpendicular to the others as
shown in Fig. 3. Designating t as the unit axis, i.e., 1

m tdtdm

m tdtdm m tdtdm
FIG. 3: The mutually perpendicular unit vectors of time t,
space d, and mass m on their respective t-, d-, and m-axes.

d tcvv-1

d tcv-1 d tcv-1v v
FIG. 4: Light speed c, and the velocity v and inverse velocity
v−1 vectors in the space-time plane.

unit on the t-axis equals 1 second, a measurement of 1
second has a geometric description 1 unit long and par-
allel to the t-axis; a measurement of 3 × 108 meters has
a geometric description 1 unit long and parallel to the
d-axis, perpendicular to the t-axis; and a measurement
of 4× 1035 kilograms has a geometric description 1 unit
long and parallel to the m-axis, perpendicular to both
the t- and d-axes. Other magnitudes of mass, space, and
time are described by scaling of the unit vectors.

B. First order motion

Consideration of the special case of uniform linear mo-
tion requires examination of the first-order rate of change
of position, velocity v. The geometric description of ve-
locity is a straight line of slope v with respect to the t-axis
as shown in Fig. 4 and given by Eq. (15); v = c = 1 de-
scribes light speed. Qualitatively, with d as a function of
v,

d(v) = vt. (26)

Quantitatively, d as a function of constant velocity is also
given by Eq. (26).

Both the space-time metric and the Lorentz transfor-
mations describe the length of the velocity vector with
respect to the resting system. This is the basis of the
invariance of s2 with respect to the Lorentz transforma-
tions. From Eqs. (14) and (15),

c2 − v2 =
s2

t2
, (27)

and therefore

1− v2

c2
=

( s
ct

)2

. (28)
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TABLE I: Geometric units of the Dimensional Coordinate System (DCS).

Units time (t) space (d) mass (m) Planck

seconds (s) 1 3.3× 10−9 2.5× 10−36 5.4× 10−44

meters (m) 3.0× 108 1 7.4× 10−28 1.6× 10−35

kilograms (kg) 4.0× 1035 1.3× 1027 1 2.2× 10−8

Planck−1 1.9× 1043 6.2× 1034 4.6× 107 1

When compared to the γ-factor from the Lorentz trans-
formations

γ =

√
1− v2

c2
, (29)

it is seen that γ = s/ct, so that γ is dimensionless and
normalized to the unit time. Remember that in Eq. (3)
the choice to express t in light-seconds as a function of ct
instead of d in seconds as a function of d/c was arbitrary.
The velocity vector is a timelike interval; v = c is light-
like. As discussed in Sec. II C, the velocity vector in the
resting system is the t-axis of the system with velocity v.

The geometric description of inverse velocity v−1 is a
straight line with slope v−1 with respect to the t-axis, as
shown in Fig. 4 and given by the relation v−1 = t/d, the
transpose of t and d in Eq. (15). Qualitatively, with d as
a function of v−1,

d
(
v−1

)
=

t

v−1
. (30)

Quantitatively, d as a function of constant inverse veloc-
ity is also given by Eq. (30).

The inverse velocity vector has the same length, given
by the space-time metric or the Lorentz transformations,
as the velocity vector. The inverse velocity vector of the
resting system is a spacelike interval that forms the d-
axis of the system with velocity v. Figure 5 shows the
resting coordinate system of A with the velocity and in-
verse velocity vectors of a moving system B forming the
t- and d-axes, respectively, from which the contracted
coordinate grid of B, moving with velocity vB, is con-
structed. This is the geometric description of the Lorentz
transformations.9,37,46

To construct A’s resting coordinate grid, lines parallel
to the d-axis intersect the t-axis at unit intervals, and
lines parallel to the t-axis intersect the d-axis at unit in-
tervals. The resting system A will measure a contraction
in the moving system B of magnitude γ from Eq. (29).
For A to measure what B calls a unit interval, the mov-
ing unit must be γ−1 long in resting units to result in
a measurement of exactly one unit. The moving unit in
B is defined by A as longer than its own resting unit,
so that after a contraction of magnitude γ is accounted
for, they are equal. To construct B’s coordinate grid, the
axes for B’s coordinate system are coincident to A’s ve-
locity and inverse velocity vectors for B’s motion (vB and
v−1
B are B’s t- and d-axes, respectively). Parallel gridlines

d
t

cv  = tv
(0,0) (1,0)(0,1) (t  ,γ   ) (γ   ,d  )(γ,0)

(1  ,1  )
(γ-1,0)θ t γ tB-1 BBB B-1 ABA -1A

A A

d
t

cv  = tv
(0,0) (1,0)(0,1) (t  ,γ   ) (γ   ,d  )(γ,0)

(1  ,1  )
(γ-1,0)θ t γ tB-1 BBB B-1 ABA -1A

A A
d

t
cv  = tv

(0,0) (1,0)(0,1) (t  ,γ   ) (γ   ,d  )(γ,0)
(1  ,1  )
(γ-1,0)θ t γ tB-1 BBB B-1 ABA -1A

A A
FIG. 5: The resting coordinate system of A, and the Lorentz
transformed coordinate system of B with velocity vB. The
oblique triangle with vertices (0,0), (γ,0), and (γ−1, dA) has
one side formed by the B-unit interval tB and a second by
B’s contracted measurement of the A-unit interval tAγ. The
rhombi (0,0), (1,0), (1,1), (0,1) and (0,0), (γ−1, dA), (1B, 1B),
(tA, γ−1) always enclose the same area.

intersecting B’s t- and d-axes at intervals of γ−1 A-units
define B’s unit intervals and form its coordinate grid.

To verify this relation, the linear unit interval of tB

from (0,0) to (γ−1,dA) along B’s t-axis is determined from
the relationship

tB =
tA

γ cos θ
, (31)

where tA is the resting unit interval from (0,0) to (0,1)
and θ is the angle of the velocity vector from Eq. (18);
tB is congruent to B’s d-unit interval dB. With B’s unit
intervals known, application of the law of sines to the
oblique triangle (0,0), (γ,0), (γ−1,dA) in Fig. 5 shows
that

tAγ = tB

sin(π
2 − 2θ)

sin(π
2 + θ)

, (32)

where (π/2 − 2θ) and (π/2 + θ) are the angles opposite
the sides (0,0) (γ,0) and (0,0) (γ−1,dA), i.e., tAγ and tB,
respectively; the triangles (0,0), (γ−1,0), (γ−1,dA) and
(γ,0), (γ−1,0) (γ−1,dA) are similar triangles. In words,
tAγ, from B’s resting perspective, is B’s properly con-
tracted unit interval of (1− v2/c2)1/2 moving A-units.
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d tn = 2n = 3n = 4n = 5n = 6n = 1

d tn = 2n = 3n = 4n = 5n = 6n = 1 d tn = 2n = 3n = 4n = 5n = 6n = 1
FIG. 6: Worldlines of first- through sixth-order curvature.

Since space and time have been defined as orthogonal
quantities, it is worth noting that B’s perpendicularity is
not Euclidean from A’s perspective. It is determined by
the constancy of the speed of light; the angle (π/4− θ),
between c and t, is always equal to the angle between c
and d. This looks much the same way a circle viewed
sideways turns into an ellipse - consider B’s system to
be at Euclidean right angles but viewed from an oblique
angle. If the moving coordinate system is truly perpen-
dicular and the unit distances are correct, then the area
AB of B’s rhombus (0,0), (γ−1,dA), (1B,1B), (tA,γ−1)
in Fig. 5 and the unit area AA of A’s rhombus (0,0),
(1,0), (1,1), (0,1) in the same figure should both be 1
square unit—AB is invariant with respect to AA. The
length of each side of B’s rhombus is equal to tB from
Eq. (31). The acute angle between B’s t- and d-axes
is 2(π/4 − θ) = (π/2 − 2θ). Then the area AB of B’s
rhombus is AB = t2

B sin(π/2 − 2θ) = 1. The area AB is
Poincaré’s area invariant as discussed by Pierseaux; Mer-
min reduces all of space-time to these rhombi of constant
area.16,27,47 Due to the relation of tB to γ as a function
of v from Eq. (31) and thus to θ from Eq. (18), this is
true for all values of θ derived from velocities less than c;
the proof is left to the reader.

C. Greater orders of motion

Consideration of the general case of any motion re-
quires the examination of second and greater orders of
the rate of change of position. Change in velocity is ac-
celeration a. The geometric description of acceleration
is a line of second-order curvature with respect to the
t-axis, as shown by n = 2 in Fig. 6 and expressed by the
relation45

d

t2
=
v

t
= a. (33)

Qualitatively, d may be expressed as a function of a:

d(a) ∝ at2. (34)

Quantitatively, from the origin with v = 0, d as a func-
tion of constant acceleration is found by taking the an-

tiderivative of both sides of Eq. (26) with respect to time
and normalizing to the unit time vector. This results in
the general form taught in first term physics,

d(a) =
1
2
at2. (35)

Change in acceleration is jerk j.48–51 The geometric
description of jerk is a line of third-order curvature with
respect to the t-axis, as shown by n = 3 in Fig. 6 and
expressed by the relation

d

t3
=

v

t2
= j. (36)

Qualitatively, with d as a function of j,

d(j) ∝ jt3. (37)

Quantitatively, d as a function of constant jerk, when
starting from the origin with v = 0, is found by taking the
antiderivative of both sides of Eq. (35) and normalizing
to the unit time vector, resulting in the general form48

d(j) =
1
6
jt3. (38)

Change in jerk is snap ψ, change in snap is crackle χ,
and change in crackle is pop φ.50 The geometric descrip-
tions of snap, crackle, and pop are lines of fourth-, fifth-,
and sixth-order curvature, respectively, as shown in Fig.
6 and expressed by the relations

d

t4
=

v

t3
= ψ, (39)

d

t5
=

v

t4
= χ, (40)

d

t6
=

v

t5
= φ. (41)

Qualitatively, with d as a function of snap, crackle, and
pop,

d(ψ) ∝ ψt4, (42)

d(χ) ∝ χt5, (43)

d(φ) ∝ φt6. (44)

Quantitatively, in general form, d as a function of con-
stant snap, crackle, or pop is given by the normalized
antiderivatives, from the origin with v = 0, of Eqs. (38),
(45), and (46),

d(ψ) =
1
24
ψt4, (45)
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FIG. 7: (a) A worldline of acceleration with its tangent in-
stantaneous velocity vector v, and its secant average velocity
vector vavg. (b) A worldline with a period of acceleration a
followed by an equal period of deceleration −(a). (c) A world-
line with the four permutations of linear acceleration a, −(a),
(−a), and −(−a), and a worldline of centripetal acceleration
(a sine curve) offset slightly above it. (d) Circular motion
with its vθ and a vectors.

d(χ) =
1

120
χt5, (46)

d(φ) =
1

720
φt6, (47)

respectively. From these it is evident that the general,
quantitative statement for d as a function of all orders n
of any motion is given by the formula

d(n) =
1
n!

d

tn
tn. (48)

Only for worldlines of zero and first orders, the geomet-
ric descriptions of distance and velocity respectively, are
the average velocity vavg and the instantaneous velocity
v equal; vavg = v = 0 for the zeroth-order, and vavg = v
for the first.45 For worldlines of second and greater orders
vavg and v no longer share the same geometric descrip-
tion. Figure 7(a) shows the relation of vavg and v to the
second-order curve for acceleration. The description of
vavg from t = 0 to any time t is given by

vavg =
d(n)
t
, (49)

while v is given by the slope of the tangent line to the
curve of acceleration. Thus, the instantaneous velocity
at any time t is given by the derivative of position as a
function of acceleration. The instantaneous acceleration
is given by the derivative of position as a function of
jerk, and therefore the instantaneous velocity is given by
the second derivative of position as a function of jerk.
For orders up to and including the sixth, instantaneous
jerk is given by the derivative of position as a function
of snap, instantaneous snap is given by the derivative
of position as a function of crackle, and instantaneous
crackle is given by the derivative of position as a function
of pop. Likewise, v is given by the third, fourth, and
fifth derivatives of position as a function of snap, crackle,
and pop respectively. Then v is given by the normalized
derivative

v = tn−2 d
n−1

dtn−1
d(n). (50)

The concept of average velocity has no physical meaning
at any single instant in time, and the concept of position
as a function of instantaneous velocity has no physical
meaning for orders of n greater than one.

The significance of the average and instantaneous ve-
locities of nth-order kinematic functions is in their pro-
portion to each other. Equation (48) shows that a factor
of 1/n! appears in the expression for d(n), while differ-
entiating Eq. (50) the prescribed number of times results
in the cancellation of that factor, so that the proportion
of vavg to v is 1 : n!; v is n! times larger than vavg. This
is demonstrated graphically in Fig. 7(a) by the relative
slopes of vavg and v. This proportion has a profound
effect on the Lorentz transformations, where the method
of measuring the velocity plays a crucial role for orders
of n greater than one.

Decreasing velocity is deceleration −(a). Deceleration
is a permutation of acceleration during which the slope
of the worldline is positive, but the change in slope is
negative. The geometric description of deceleration is an
inverted curve of second-order with respect to the t-axis,
as shown in Fig. 7(b) and given by45

− d

t2
= −v

t
= −(a). (51)

Qualitatively, d as a function of deceleration is given by

d[−(a)] ∝ −(a)t2. (52)

Quantitatively, d as a function of constant deceleration
is given by

d[−(a)] =
1
2
[−(a)]t2. (53)

There are two descriptions for motion of this nature.
A description of d in absolute terms is consistent with
everything discussed to this point. With the addition
of the operator ±, relative motion in exact opposition
to d can be uniquely described. Continuously repeat-
ing motions of these types, described either absolutely
or relatively, encompass the class of physical phenomena
known as harmonic motion. The absolute description is
representative of phenomena such as wave propagation.
The relative description is representative of phenomena
such as springs, orbits, and, by extension, pendula.

Deceleration −(a) is not negative acceleration (−a);
negative deceleration −(−a) is not necessarily accelera-
tion (a). In the strictest sense, deceleration is only that
component of acceleration during which there is a reduc-
tion in velocity in the direction of d. During negative
acceleration there is an increase in velocity, and during
negative deceleration there is a decrease in velocity, but
both are in the negative direction of d. During negative
acceleration, both the slope and the change in slope are
negative. During negative deceleration, the slope is neg-
ative while the change in slope is positive. In all cases,
the term acceleration refers to a worldline of second-order
with the slope and the change in slope of like sign. The
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term deceleration refers only to second-order worldlines
with slope and change in slope of opposite sign. Upon
substituting the term for negative acceleration into Eq.
(53), one can see that deceleration −(a) and negative ac-
celeration (−a) are described by the same curve. This
is also true of acceleration (a) and negative deceleration
−(−a). By alternating Eqs. (35) and (53), a close ap-
proximation of the sine curve,

d = sin
(
t− π

2

)
, (54)

with the appropriate scaling and offsets, is constructed.
The sine curve in Eq. (54) describes the worldline of

an object in circular motion under centripetal accelera-
tion a, from a plane-edge view, when d is parallel to the
plane of the circular motion. The circular velocity re-
mains constant, but the measured linear velocity along
the plane of the motion varies as the direction of the
velocity varies with respect to d. Circular motion on-
edge describes a sine curve. Linear motion describes the
second-order curves given in Eqs. (35) and (53). The
two worldlines shown in Fig. 7(c) are not the same circle
from two different perspectives. These are the worldlines
of two different physical phenomena: linear acceleration
and centripetal acceleration, each with a = 1 c/s.

Consideration of the case of circular motion requires
the examination of angular velocity. If an event can be
described as repeating in angular units θ, then it may be
described as having an angular velocity ω. If an event
can be described as repeating in temporal units, then it
may be described as having a frequency f . The geomet-
ric description of continuous angular velocity is the sine
curve shown parallel to the t-axis of the reference system
in Fig. 7(c). The sine curve has amplitude 2r where r
is the radius of curvature of the path of travel. Quali-
tatively, angular velocity and frequency are synonymous
dimensions; both are given by

f ∝ ω =
θ

t
. (55)

Quantitatively, d as a function of constant angular veloc-
ity is given by

d(ω) = r − r cos(ωt), (56)

and ω and f are related in the proportion r : 2πr; angular
velocity is measured in radial units along the circumfer-
ence per unit time, and frequency can be measured as
circumferential units per unit time. Wavelength λ is a
closely related measurement. A wavelength times a fre-
quency gives a velocity, λf = v. Wavelength is a spatial
unit in 1 : 1 proportion to the temporal unit f−1, sym-
metric about the velocity c.

By taking the proportion of the circumferential path
length `, given by ` = 2πr, to the period T , given by
T = 2π/ω, a constant velocity vθ, where

vθ =
`

T
= ωr (57)

is obtained. Like all good constant velocities, this one too
is subject to special relativistic effects.52 Comparison of
the two perspectives vθ and v = 0, the resting system,
reveals a difference in the measurements of ω. The sys-
tem with vθ measures ωθ due to Lorentzian contraction
in the proportion

ωθ = ω

√
1−

v2
θ

c2
, (58)

while the system with v = 0 measures ω.
Circular motion requires a centripetal acceleration a

with a linear velocity component vθ as shown in Fig.
7(d). The geometric description of centripetal accelera-
tion is the same line of second-order curvature with re-
spect to the t-axis as shown in Fig. 7(a). A constant cen-
tripetal acceleration can be described by the sine curve
Eq. (56), symmetric about a line parallel to the t-axis
as shown in Fig. 7(c). Qualitatively, linear acceleration
and centripetal acceleration are synonymous dimensions;
both are given by Eq. (34). As described in Einstein’s
principle of equivalence, centripetal acceleration is in-
distinguishable from any other form of acceleration.52,53
Quantitatively, the centripetal acceleration is related to
the linear velocity component in square proportion:

v2
θ = ar. (59)

Substituting Eq. (59) for v2 in Eq. (29) gives

γθ =
√

1− ar

c2
. (60)

The principle of equivalence is geometrically demon-
strated by the correspondence of the curves for the dif-
ferent kinds of acceleration. Centripetal acceleration is
a composition of linear accelerations from varying direc-
tions. Once corrected for, a worldline of the same accel-
eration from a single direction is geometrically indistin-
guishable. In practice this means that gravity is just as
good a centripetal force as any other. Then the gravita-
tional acceleration given by

a =
GM

r2
(61)

can be substituted into Eq. (60), to arrive at an expres-
sion

γg =

√
1− GM

c2r
(62)

for a special relativistic effect in proportion to the grav-
itational field. However, as Einstein found, and others
have discussed, this is only half of the gravitational effect
measured; there is a missing factor of two.10,20,34,35,53–57

D. Factors of n!: a geometric description

For Einstein the development of the tensor field of
general relativity revealed this factor of two, and the
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γ td 1cγ-1 vγ-1θ θ2θθ v-1 2v-1 v

γ td 1cγ-1 vγ-1θ θ2θθ v-1 2v-1 v γ td 1cγ-1 vγ-1θ θ2θθ v-1 2v-1 v
FIG. 8: The similar triangles generated by the Lorentz trans-
formation, where v is the average velocity. The length of the
base of the large triangle is γ−1, and the side opposite the
angle θ is vγ−1. The sides opposite and adjacent the corre-
sponding angle in the small triangle are γ−1 − γ and vγ−1,
respectively. The hypotenuse of the small triangle is parallel
to the inverse velocity vector, and 2v−1 is the inverse instan-
taneous velocity vector.

Schwarzschild metric depends on it. Schiff concludes that
this factor of two arises from the sum of two separate
terms, one for space and one for time. Strandberg de-
rives it in a vector field by considering both tangential
and radial vectors. However, in a dimensional field with
only one direction, such extravagance is unnecessary. In-
stead, simple geometry is used to describe the same phe-
nomenon revealed to Einstein in the tensor field. The
physical reality of this factor of two has been quantita-
tively confirmed to a 99% precision by the redshift ex-
periments of Pound and Rebka (1959) and Pound and
Snider (1965) in a 22.6 meter tower. The body of phys-
ical evidence in support of the exact magnitude of these
general relativistic effects is impressive and growing.54,58

The definition of velocity is the distance traveled per
time traveled. In measuring the distance traveled over
any period of acceleration, time must pass. The distance
between two spatial points separated in time constitutes,
by definition, the measurement of an average velocity
vavg; by definition the instantaneous velocity is instanta-
neous. However, as discussed in Sec. III C, the instanta-
neous velocity v is the velocity the relativist must con-
tend with. Since v is the correct measure to use, but vavg

is the measure represented by the worldline, a modified
Lorentz transformation must be derived to determine the
contribution of the acceleration. Geometrically, this con-
struction must result in perpendicular axes of v and v−1.
If the slope of v is twice that of vavg as discussed in Sec.
III C, then the slope of its perpendicular must be half
that of v−1

avg.
The key is to express the Lorentz transformation in

terms of v. This is accomplished by taking advantage
of the similar triangles discussed in Sec. III B and shown
in Fig. 8. The length of the base of the large triangle is
γ−1. This is the side adjacent to the angle θ and coinci-
dent with the t-axis. The side opposite the same angle is
given by vavgt, where t = γ−1, and also forms the base of

the small triangle. The side opposite the angle θ of the
smaller triangle is γ−1 − γ, so that vavg of the smaller
triangle is given by the ratio of the side opposite to the
side adjacent:

vavg =
γ−1 − γ

vγ−1
. (63)

This is the vavg that, if doubled, will give the correct
description for v. For legibility c2 = 1 is omitted in the
following, and v2 is considered dimensionless due to the
implied division by c2.

Substituting 2v = 2vavg = v for vavg, the composition
of v as a function of γ proceeds as follows:

2v =
2v2

v
=

1− 1 + 2v2

v

=
1− (1− 2v2)

v
=

1
v
− 1− 2v2

v

=
1√

1−2v2

v 1√
1−2v2

−
√

1− 2v2

v 1√
1−2v2

=
1√

1−2v2 −
√

1− 2v2

v 1√
1−2v2

; (64)

compare this to Eq. (63). From the final forms of Eqs.
(62) and (64) it can be seen that γ as a function of a
from Eq. (61), and properly corrected for v = 2v with c2
reinserted, is actually given by

γa =

√
1− 2

GM

c2r
. (65)

The effects of Eq. (65) apply to space-time in any field
of acceleration. An object static under a gravitational
acceleration is affected equally to an object static with re-
spect to a linear acceleration, i.e., in a rocket ship. When
motion within the field of acceleration occurs, third-order
motion called jerk occurs. Perihelion precession is a phys-
ical manifestation of jerk.

Einstein derived the magnitude of planetary perihelion
precession ∆φ as

∆φ =
24π3r2a

T 2c2(1− e2)
= 5.018× 10−7 rad

orbit
(66)

when values for Mercury are used.10,52,55 This is often
presented in terms of the product GM as

∆φ =
6πGM

c2ra(1− e2)
(67)

by substituting Kepler’s expression for the square of the
period,

T 2 =
4π2r3a
GM

, (68)
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into Eq. (66). In his discussion on the perihelion preces-
sion, Strandberg gives

∆φ =
2π√

1− 6GM
c2r

− 2π ≈ 6πGM
c2r

(69)

as an approximation [although there does seem to have
been a negative sign in the exponent omitted from
Strandberg’s Eq. (50)]. This is appropriate for a circular
orbit of e = 0, as the factor (1 − e2) scales the result to
the semi-latus rectum r` as a function of eccentricity.

To show the relationship of Einstein’s approximation
to the Lorentz contraction, beginning with Eq. (67) in
radians per orbit, the number of radians given is the dif-
ference of the number of radians in a Euclidean orbit
from the number of radians in a relativistic orbit. The
number of radians in a Euclidean orbit is 2π. The num-
ber of radians in a relativistic orbit is greater than 2π.
From Eq. (67), multiplying by 1/2π orbits per radian,

6πGM
c2r`

rad
orbit

× 1
2π

orbits
rad

= 3
GM

c2r`

orbits
orbit

, (70)

where r` is given by r` = ra(1 − e2), leaves the orbital
excess. This is the portion of the relativistic orbit in
excess of the Euclidean orbit. The expression for the
complete relativistic orbit is simply one Euclidean orbit
plus the excess, or

1 +
∆φ
2π

= 1 + 3
GM

c2r`
. (71)

Keeping in mind that, prior to the advent of computers,
approximation methods such as log tables, trig tables,
and slide rules were common, Einstein’s application of
two popular approximations,

1 + x ≈ 1
1− x

, (72)

and

1− 1
2
x ≈

√
1− x, (73)

can be extracted.10,20,52,57 The result is that

1 + 3
GM

c2r`
≈ 1√

1− 6GM
c2r`

. (74)

Two factors contributing to precession can be isolated
in the discriminating term of the Lorentz factor on the
right-hand side of Eq. (74),

6
GM

c2r`
= 6

GM

c2ra(1− e2)
. (75)

The first factor,

GM

ra
= v2

orb, (76)

contributes to precession due to constant velocity in a
circular orbit. The second factor, (1 − e2), contributes
to precession due to the eccentricity of the orbit. These
two motions produce jerk—jerk due to the change in di-
rection of the acceleration as a circular orbit varies in
position, and jerk due to a change in the magnitude of
the acceleration as an elliptical orbit varies in its radius
r. Schot gives the magnitude of the jerk generated by a
central force proportional to distance as48,49

j = −ω2v. (77)

To establish the relationship of the jerk to the perihelion
precession, the discriminating term, i.e., Eq. (75), in the
central expression of Eq. (69) must be expressed in terms
of Eq. (77) to arrive at the same precession predicted by
the general theory.

Expressing ω in terms similar to those of the discrim-
inant,

ω2 =
GM

r3a
, (78)

and taking note of the fact that ω2 must be equal to
vorb for the product in Eq. (77) to be equivalent to Eq.
(76), it is found that Eq. (77) is in excess by a factor of
vorb/r

2
a. Furthermore, vorb/2πra = T , so in terms of the

first-order Lorentz transformation,

v2 =
jraT

2π(1− e2)
(79)

for the third-order Lorentz transformation. Substituting
this term into the center expression of Eq. (69) and using
values for the planet Mercury gives

2π√
1− 6 jraT

c2 2π(1−e2)

− 2π = 5.018× 10−7 rad
orbit

(80)

as the correct value for the perihelion precession from Eq.
(66), in terms of the jerk. In the final form, the contri-
butions of the circular component (2π) and the eccentric
component (1−e2) are clearly visible in the determinant.

The geometric components (2π) and (1 − e2) tie di-
rectly to the spatial component ra, which in turn is the
related measure of d in the Lorentz transformation. The
period T can also be generalized as a measure of t. Ex-
trapolating from the first- through third-order Lorentz
transformations, a general form of the nth-order Lorentz
transformation is proposed. For the first through third
orders v, a, and j

γv =

√
1− v2

c2
(81)

γa =

√
1− 2

a · d
c2

(82)

γj =

√
1− 6

j · d · t
c2

(83)
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and a zeroth-order d transformation (the null transfor-
mation)

γd =

√
1− 0

c2
(84)

is relatively safe to propose. Keeping in mind that the
determinant must be dimensionless, the general form of
the nth-order Lorentz transformation then appears to be

γn =

√
1− n!

(
v

tn−1

)
· d · tn−2

c2
. (85)

E. The origin and the axes

If the worldlines of all points on or in an object have
the same angular velocity about an axis within that same
object, the object is said to have spin. Angular velocity,
frequency, and spin are synonymous dimensions. They
are all related to a centripetal acceleration, which in turn
is synonymous with linear acceleration. The linear veloc-
ity component vθ of any specific point on or in a spinning
object varies with its distance from the axis of spin, but
the frequency, angular velocity, and spin are constant re-
gardless of position.

Einstein proposed that theoretical consideration of lin-
ear acceleration gives information about gravitational
acceleration.53 This proposition is known as the principle
of equivalence. Because the angular velocity, frequency,
and spin are related to a centripetal acceleration, which
in turn is synonymous with linear acceleration, the prin-
ciple of equivalence extends to all of these cases. There
appears to be no reason to limit this extension to the di-
mension of acceleration. One linear velocity, irrespective
of magnitude, is just as good as any other; any one force
is just as geometrically predictable as the rest. Therefore,
a more universal statement is proposed as a fundamental
property of the Dimensional Coordinate System: theo-
retical consideration of the general dimensional qualities
of any physical process gives information about any syn-
onymous dimensions.

Linear and gravitational acceleration are synonymous
dimensions, and all worldlines for acceleration are similar
functions of second order in the space-time plane. Angu-
lar velocity and frequency are synonymous dimensions,
and all worldlines for angular velocity and frequency are
similar functions. Any two units that express synony-
mous dimensions also express similar functions, i.e., years
and days, meters and yards, joules and kelvins. Geo-
metrically, this means that all second-order worldlines
in the space-time plane are equivalent to acceleration,
and therefore the same results are predicted for linear or
gravitational acceleration.

The geometric description of spin S is that of angular
velocity ω, the sine curve depicted in Fig. 7(c) and given
in Eq. (56). Qualitatively then, d as a function of spin, in
its most basic form, is given by the expression for accel-
eration in Eq. (34). The physical quantity spin describes

the case of true uniform circular motion. Quantitatively,
with its four permutations of positive and negative, ac-
celeration and deceleration, Eq. (35) is all that is needed
to express spin. In actual practice, spin is commonly ex-
pressed as an integer proportion, from the set of rational
numbers Q, of Planck’s physical constant ~.

The dimensions of ~ are those of angular momentum
L. These dimensions include factors of mass and of spe-
cific angular momentum, the inverse of acceleration. The
physical direction of L is perpendicular to both the t- and
d-axes of the worldline of any point on or in any object
with spin. This perpendicularity does not necessarily ex-
ist for an object free in space. The spin axis of a free
object can have a nonperpendicular orientation to its ve-
locity axis, and therefore to its t-axis. This quantitatively
distinguishes a free object from free space-time, and one
free object from another, as applied by Pauli in his exclu-
sion principle. Thus the L-axis of a free object is parallel
(or antiparallel) to its m-axis.

The geometric description of a free object in the DCS is
that of the origin of a unique dimensional triad (t, d,m).
Qualitatively, a free object has the dimensionless measure
of number N . Quantitatively, N is real and can therefore
be counted, is nonzero and positive, and is given by the
closed set of all natural numbers N. Large numbers of
N may be expressed in proportion to a standard quan-
tity n. The SI quantity of n is the mole 6.0 × 1023 N .
Furthermore, when quantities with similar dimensional
qualities are expressed in proportion to each other, the
ratio is dimensionless. Qualitatively, n is any dimen-
sionless quantity. Some synonymous dimensions are the
radian and the gross. Quantitatively, n is given by the
set of all real numbers R (which has N as a subset).

The dimensions of the DCS axes need not be limited
to the triad (t, d,m). Any triad consisting of axes related
by the same proportions as ct = d, and dc2/G, such as
(v, v2, F ) or (a, d2/t3,md/t3), will have the same geomet-
ric relations as a triad of the prime dimensions.

The scaling of DCS axes is not limited to linear in-
crementation: axes of second and greater order scaling
create curled up dimensional spaces; allowing the orien-
tation of coordinate axes to vary from the perpendicular
creates Gaussian curved spaces. As discussed in Sec. IID,
all methods applicable to the geometric space (x, y, z) are
equally applicable to the dimensional space (t, d,m). One
such interesting scale is the exponentially scaled triad
(et, ed, em) where e is the base of the natural logarithm.
The Taylor series expansion of the form

ex =
∞∑

n=0

xn

n!
(86)

gives the discrete components
∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · · (87)

for each respective DCS axis. The first term 1 is not
only x0, but also, both qualitatively and quantitatively,
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the origin N in the DCS as the point of intersection t0 =
d0 = m0 = 1 = N . The factor 1/n! should be familiar
from the discussion in Sec. III C and its application to
the Lorentz transformation in Sec. III D. The remaining
factor xn is the subject of the following section.

IV. THE PERIODIC TABLE OF DIMENSIONS

The idea is that, armed with the fundamen-
tal and derived dimensions, every numeri-
cally expressible quantity in the universe can
be formulated. Carried further, this means
that every possible relation, encompassing ev-
ery facet of our knowledge about the physical
world can be—at least in theory—uniquely de-
fined.

-T. Szirtes4

A. The elements

Consider a system composed of three exponentially
scaled, mutually perpendicular axes t, d, and m, with
unit increments of tN , dN , and mN , respectively. Within
this small domain the dimensional terms for time t1,
space d1, and mass m1 are easily identified. Other terms
such as area A = d2 and volume V = d3 also appear
as derived dimensions on these simple xN number lines.
Applying the ± operator to the exponent allows the
representation of further components, such as frequency
f = t−1, as a reflection across the origin.

Now consider a coordinate system constructed of all
points (t±n, d±n,m±n) when n is allowed to range freely
over all real values for each axis. Combination of the
terms t±n, d±n, and m±n allows the representation of
every possible derived combination of mass, space, and
time as a product m±nd±nt±n (the order of the variables
t, d, and m is reversed when expressing a product to help
avoid confusion).5 One version of Occam’s razor wisely
advises that “entities should not be multiplied unneces-
sarily.” In The Harmony of the World I XX, Kepler ad-
vises that “No operation of addition or subtraction gives
rise to diversity, but all are equally related to their pair
of ‘terms’ or ‘elements.’”59 Algebraically, what Kepler is
saying is that unlike terms cannot be added—they can
only be multiplied, and multiplication derives diversity.
Alternatively, Occam is saying that multiplication should
be used sparingly, so it is also prudent to set some upper
limit on n to keep it real. After all, physical quantities
are measurements of real events.

Szirtes and Jackson both examine the question of how
many dimensions a dimensional system should have.4,60
Szirtes demonstrates the possibility, and impracticality,
of both mono- and omni-dimensional systems. In a
one-dimensional system everything is derived and there
is therefore no resolution, i.e., differentiation, between

TABLE II: The System of Prime Dimensions (SP).

SP dimension SI unit

number (n) mole (mol)

polarity (±) n/a

time (t) second (s)

space (d) meter (m)

mass (m) kilogram (kg)

the units; in an infinitely-dimensional system everything
is fundamental and therefore relates no common traits
among the components. He concludes by recommend-
ing the SI system with its seven fundamental dimensions:
length, time, mass, electric current, amount of substance,
temperature, and luminous intensity. However, there are
ambiguous and redundant physical qualities expressed by
some fundamental SI units. Amount of substance n is di-
mensionless, and temperature can be derived as energy
with the dimensions md2t−2. Electric current and lu-
minous intensity can also be resolved in terms of t±n,
d±n, and m±n, so that the entire SI system may be re-
solved into a system of three primary dimensions t, d, and
m, from which all other dimensions m±nd±nt±n may be
derived.54

A system of prime dimensions, derived from SI units,
establishes the fundamental relationships from which all
other physical qualities can be derived. The System of
Prime Dimensions (SP) shown in Table II consists of the
primary natural qualities described by the DCS axes:
mass, space, and time. To quantitatively evaluate the
results of any geometric analysis, two more physical char-
acteristics are needed: one to express magnitude, and one
to express polarity. These are the scalar n and the arith-
metic operator ±. Neither n nor ± are dimensions. They
are included strictly to facilitate quantitative analysis.

Every quality of nature can be derived as products of
these prime dimensions. If every derived combination
of the three prime dimensions represented by the DCS
axes is considered, the number of possible derivations is
infinite. However, there are practical limits to the num-
ber of measurements necessary to conveniently describe
every aspect of nature.

After considering the number of dimensions, Szirtes
turns to the question of standard magnitudes. Since all
quantities go to n, SP is not a system of units. It is a sys-
tem of dimensional relations with all quantity removed,
and thus any system of units may be applied; SI is the
present standard. Both SI and SP are coherent systems of
dimensions, in that the derived dimensions are expressed
as combinations of the fundamental dimensions without
conversion factors other than 1.4,61
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B. The table

The construction of a three-axis periodic table, based
on the prime dimensions of the DCS axes, and illustrated
in Fig. 9, provides a visual medium for an investigation
of derived dimensions. Each axis in this Periodic Table
of Dimensions has both positive (+) and negative (−)
coordinates, 180 degrees in opposition from the origin;
each coordinate represents an exponent n. Positive co-
ordinates express positive exponents in the numerator,
while negative coordinates express positive exponents in
the denominator, according to convention. Expressing
a derived dimension as a product of factors with either
positive or negative exponents is equally valid. Unity,
represented by the unit scalar N , is placed at the origin.
Each step away from the origin along any axis represents
an exponentially incremented, or decremented, factor of
the dimension assigned to that axis. Linear increments of
the exponent of each prime dimension proceed along each
axis. Just as in any other three-axis coordinate system,
every coordinate triplet (t, d,m) represents a unique po-
sition; in the Periodic Table of Dimensions each unique
position represents a unique physical dimension.

As a table in three directions, the Periodic Table of Di-
mensions is best viewed in 3-D rather than on a 2-D page
or computer screen. An interactive html table is available
online at EPAPS, but a 3-D construction makes an excel-
lent classroom tool for presentations.62 Abbreviated ver-
sions are frequently sufficient. For example, a discussion
on Newtonian mechanics requires no more than the lower
left-hand quadrant of the table presented here, while the
ideal gas law requires approximately one-third of the ta-
ble to include both pressure and volume. Construction
drawings are also available at EPAPS.

C. Dimensional resolutions

The universal principle of equivalence provides the the-
oretical basis to resolve every numerically expressible
quantity in the universe to the prime dimensions of time,
space, and mass. The universal principle of equivalence is
demonstrated beyond general relativity by the superpo-
sition of forces and the superposition of energies. Math-
ematically, superposition is demonstrated by addition of
like terms. Addition and subtraction do not alter the
dimensions of any physical equation, but multiplication
and division provide dimensionally diverse results. This
general principle describes the limited diversity neces-
sary to describe any derived dimension. Rather than re-
quiring a separate description for accelerations caused
by nonuniform linear translation, uniform rotation, and
gravitation, it is only necessary to describe the general
case of acceleration, to which a scalar is applied for the
description of the specific case; an expression of polarity
can be used to further differentiate, i.e., deceleration vs.
acceleration. This is true of every dimensional quality of
nature, including forces and energies.

In an empirical attempt to qualify the claim that
every numerically expressible quantity in the universe
can be formulated in the periodic table, 1,727 unique
physical measurements have been identified at the time
of this writing in a limited search including standard
references.4,63–65 Of the unique physical measurements
identified, 1,626 (94.2%) are defined by sources in terms
of fundamental units of time, space, mass, and electric
charge. Only those measurements with clear definitions
by outside sources in terms of the prime dimensions or
electric charge and those used in the context of this pa-
per were considered. Once resolved to prime dimen-
sions, each measurement is cataloged with its synony-
mous dimensions. This catalog is also available online
at EPAPS.62 A representative sample demonstrating the
statistical extremes and the diversity of the measure-
ments, units, and sources is presented in Table III. In
general, web resources were avoided. Russ Rowlett’s Dic-
tionary of Units of Measurement is a notable exception.65

Certainly, the fact that “dozen” is defined in only one
source simply reflects the lack of cookbooks in the survey.
A definite bias towards physics has been exercised, but
the citation of the dimensions of thermal conductivity
30 times seems to be statistically significant. This may
be due in part to a consensus on nomenclature; not one
other dimension synonymous with thermal conductivity
was identified. In all, the number of times a measure-
ment is defined according to the standards of this survey
has little bearing on the results beyond the lack of a sup-
porting reference in 19 cases.

There are 72 unique resolutions cataloged by SP di-
mensions at the time of this writing. All are within the
limits of t−6 to t3, d−5 to d4, and m−2 to m1. The 66
physical quantities within the limits of t−4 to t2, d±4, and
m±1 fit inside the 7×9×3 rectangular volume of 189 pos-
sible triplet combinations presented in Fig. 9. Many of
the measurements are dimensional inversions of other de-
rived dimensions. A simple example is frequency, whose
inverse is time. Elimination of these redundancies would
reduce the number of unique dimensions, but would pro-
mote ambiguity. Furthermore, no clear axial symmetry
of inversion is apparent within the scope of identified di-
mensions. There is some symmetry about the axis in
the space-time plane containing velocity dt−1 and spe-
cific energy d2t−2, and even less about an approximate
axis through all three planes including fluidity m−1d1t1

and dynamic viscosity md−1t−1, but there is no one-to-
one correspondence. Many of the possible derivations
have no associated measurements yet, but just as with
the Periodic Table of Elements, applications of the yet-
to-be-filled elements of the Periodic Table of Dimensions
may just be waiting to be discovered.

One such application is that of the physical constant.
When the Planck units are applied to the elements of
this table, the magnitudes of the derived dimensions are
physical constants. By definition, t, d, and m in Planck
units are the Planck time tP, the Planck length dP, and
the Planck mass mP. From these the derived magnitude
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fluidity      (1,1,-1)

angular   inertia   (0,2,1) first hyper-    polarizability   (1,-1,1)mass    m   (0,0,1) linear   density   (0,-1,1) capacitance       (0,-2,1) density      (0,-3,1) density   gradient   (0,-4,1)acoustic    impedance   (-1,-4,1)electrical    conductivity   (-1,-3,1)conductance      (-1,-2,1)dynamic   viscosity   (-1,-1,1)electric   charge   (-1,0,1)momentum      (-1,1,1)angular    momentum   (-1,2,1)atomic    stopping    power    (-2,4,1) energy      (-2,2,1) force      (-2,1,1) electric   current   (-2,0,1) pressure      (-2,-1,1) pressure   gradient   (-2,-2,1)heat    source    power    (-3,-1,1)radiance      (-3,0,1)power      (-3,2,1)stopping    cross    section    (-2,3,1) inverse    velocity   (1,-1,0)area      (0,2,0) number N   (0,0,0) wave   number   (0,-1,0) volume    concentration   (0,-3,0)volume   activity   (-1,-3,0)  heat        transfer    coefficient    (-1,-2,0)thermal    conductivity   (-1,-1,0)frequency      (-1,0,0)velocity      (-1,1,0)electric    potential   (-1,2,0)specific   energy   (-2,2,0) acceleration      (-2,1,0) angular    acceleration   (-2,0,0) specific   pressure   (-2,-1,0)angular   jerk   (-3,0,0)specific   power   (-3,2,0) transport   diffusion   (1,-1,-1)specific   area   (0,2,-1) mass concentration   (0,0,-1)specific   activity   (-1,0,-1)
insulation   efficiency   (1,2,0) thermal   resistivity   (1,1,0) time    t   (1,0,0) temporal   density   (1,-3,0)moment of   section   (0,4,0) distance    d   (0,1,0)volume   flow   (-1,3,0) jerk   (-3,1,0)snap   (-4,1,0)thermo-electric   power   (1,0,-1)resistance      (1,2,-1) specific   length   (0,1,-1)inductance      (2,2,-1) permeability       (2,1,-1) thermal   expansion   (2,-2,-1)

fuel    efficiency   (0,-2,0)volume      (0,3,0)mass    stopping    power    (-2,4,0)
specific   volume  ( 0,3,-1)resistivity      (1,3,-1)

d t mN(t,d,m)

FIG. 9: The Periodic Table of Dimensions. Three space-time coordinate planes, graduated from top to bottom as the m, N ,
and m−1 planes, respectively, give an ordered presentation of every measurement that can be derived from the prime dimensions
of mass m, space d, and time t.
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TABLE III: A representative summary of the Catalog of Synonymous Dimensions.

Sample Number of Fundamental SI SP Synonymous

measurement citations quantity unit dimensions dimensions

dozen 1 number mole n 213

yard 3 distance meter d 209

gallon 3 volume cubic meter d3 203

pound-mass 4 mass kilogram m 131

acre 3 area square meter d2 105

torque 4 energy newton-meter md2t−2 96

half-life 4 time second t 80

bar 5 pressure pascal md−1t−2 72

rpm 2 frequency hertz t−1 42

luminous intensity 6 power candela md2t−3 32

electric chargea 5 mass flow coulomb mt−1 13

surface tension 11 surface tension newton per meter mt−2 13

thermal conductivity 30 thermal conductivity watt per meter-kelvin d−1t−1 1

aA discussion on the dimensions of electric charge follows.

of the velocity element dPt
−1
P is found to be light speed c,

the derived magnitude of the angular momentum element
mPd

2
Pt
−1
P is found to be Planck’s reduced constant ~, and

the elementm−1
P d3

Pt
−2
P , which had no corresponding mea-

surements in the survey, is found to be the gravitational
constant G. Still other elements are derivations of these
constants. The derived magnitude of the mass flow ele-
ment mPt

−1
P is c3/G. Since the Planck units themselves

are derived from the constants c, G, and ~ alone, it can
be expected that all further derivations will be functions
of some order of each.

Of all the dimensional resolutions examined in this sur-
vey, electric charge q stands out along with the prime
dimensions as essentially unresolved. This seems to re-
sult from an arbitrary emphasis on electric current q/t
as a fundamental unit.60 However, charge is not without
its derivations as a product of prime dimensions. The
CRC Handbook discusses three variants of the cgs system:
the electrostatic, the electromagnetic, and the Gaussian
systems.61 In the electrostatic system, q has the dimen-
sions m1/2d3/2t−1; in the electromagnetic system q/t is
defined with the dimensions m1/2d1/2t−1 so that q has
the dimensions m1/2d1/2t0 and the product qc has the
dimensions m1/2d3/2t−1; the Gaussian system is a hy-
brid of these two. These dimensions of q are confirmed
by Allen as m1/2d3/2t−1ε1/2, where the permittivity ε is
dimensionless.64 When the SP dimensions of ε, which are
m/d3, synonymous with density, are taken into account,
m1/2d3/2t−1ε1/2 becomes m/t.

In order to derive the m1/2d3/2t−1ε1/2 dimensions, two
fundamental electromagnetic constants are left dimen-
sionless: the permeability µo and permittivity εo of free
space. Furthermore, factors of π appear where they are
not expected or wanted in equations using these systems.
This is an example of a nonrationalized system. A ratio-
nalized system includes factors of π in the constants to

remove the unwanted factors of π from the results.60,61,64
The SI and SP systems are rationalized systems in that
µo is defined with a factor of 4π, εo is defined as a function
of µo, and their proportion is determined by the speed of
light in the relation

µoεoc
2 = 1. (88)

It is in the dimensions of q that SI and SP depart,
and in SP q is derived from the fundamental electro-
magnetic relationship given in Eq. (88). In SI q/t is a
fundamental dimension, and the unit of inductance, the
henry, has the dimensions4,61 md2t−2(q/t)−2. Permeabil-
ity has the dimensions of henry per meter, which resolve
to mdt−2(q/t)−2, in which q is the only dimensionally
ambiguous factor in SP terms.

In SP, the derivation of q follows from the SI definition
of the fundamental unit of electric current:

The ampere is that constant current which,
if maintained in two straight parallel conduc-
tors of infinite length, of negligible circular
cross-section, and placed 1 meter apart in
vacuum, would produce between these conduc-
tors a force equal to 2×10−7 newtons per me-
ter of length. (9th CPGM [1948], Resolutions
2 and 7).

The measurable qualities in this definition of electric cur-
rent are force per distance. Resolved to the fundamental
components of the DCS axes, force per distance becomes
mt−2. All other electric quantities can be derived from
electric current. In SI units, the ampere-second com-
prises the fundamental unit of charge, the coulomb. In
DCS terms, the geometric description of q becomes a line
with slope m/t. In the Periodic Table of Dimensions, this
makes q synonymous with mass flow, as opposed to the
electrostatic system definition with fractional exponents.
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Given m/t as the dimensions of q, the dimensions of
µo become dt2/m, the reciprocal of pressure P . From
Eq. (88), and with c and µo defined dimensionally, εo has
dimensions synonymous with density ρ. Rearrangement
of Eq. (88) gives the relation c = (1/µoεo)1/2. Since µo

is synonymous with the reciprocal of P and εo is syn-
onymous with ρ, the speed of light is then qualitatively
defined by the relation c ∝ (P/ρ)1/2, which is synony-
mous with the theoretical formula for the speed of sound
in air,66,67 vsound = (1.4Pair/ρair)1/2. Furthermore, the
electric field E is defined60,68 as the force per unit charge,
E = F/q. This has the SP dimensions of velocity. Analo-
gous to E is the gravitational field G, derived as the force
per unit mass, G = F/m. This has the SP dimensions
of acceleration. This gives the analogous result in both
systems that the force is a product of the source and the
field:

F (G) = ma, (89a)

F (E) = qv. (89b)

The qualitative similarity between field equations and
boundary conditions in different physical contexts and
the SI definition of electric current are strong grounds
for favoring the use of m/t over m1/2d3/2t−1 as the di-
mensions of q.

D. Dimensional arithmetic

The table not only has organizational properties, but
also mathematical properties. In the Periodic Table of
Dimensions (Fig. 9), mathematical operations on dimen-
sions cause movement through the table in proportion
to the dimensions of the terms; all of these operations
are the result of standard exponential convention. Addi-
tion and subtraction are limited to like terms. The addi-
tion or subtraction of like terms results in no change to
the dimensions of the terms and therefore no movement
through the table—no operation of addition or subtrac-
tion gives rise to diversity. As an example, 5 meters (di-
mension d) can be added to 1 meter (dimension d) and
the dimension of the result, 6 meters, is still d.

Multiplication of any two dimensions proceeds from
one factor, by addition of the coordinates (the exponents)
of the second factor, to the product. Dimensional multi-
plication is illustrated in Fig. 10(a). For Newton’s second
law F = ma, force is arrived at by adding the position of
m [1 up (from the origin)] to the position of a [2 forward,
1 left (from the origin)]. On paper this is accomplished
arithmetically by addition of the individual components
of the dimensional triad, i.e.,

F = m × a

(−2, 1, 1) = (0, 0, 1) + (−2, 1, 0). (90)

Division is simply the inverse operation proceeding from
the numerator. Rearranging the ideal gas law for pressure

NN N N×=(a) amF (b) tN=Nf(c) N 2= (d) Nv2= 1/2NvS/ρ Vq -1

NN N N×=(a) amF (b) tN=Nf(c) N 2= (d) Nv2= 1/2NvS/ρ Vq -1 NN N N×=(a) amF (b) tN=Nf(c) N 2= (d) Nv2= 1/2NvS/ρ Vq -1
FIG. 10: Dimensional arithmetic. Each cube represents an
element in The Periodic Table of Dimensions: (a) Force F is
derived from the multiplication of mass m and acceleration a,
(b) frequency f is the inversion of time t, (c) mass stopping
power S/ρ is derived by squaring electric potential Vq, and
(d) velocity v is derived as the square root of specific energy
v2.

gives P = nRT/V , where n and R are dimensionless
so that their product is the origin N . Then nR times
the temperature T is synonymous with energy E, whose
position is 2 forward, 2 left, 1 up; volume V is 3 left.
For multiplication, movement is away from the origin;
for division, movement is toward the origin. Then for
T/V , the coordinates of V are subtracted (move 3 right
instead of left) from those of E (2 forward, 2 left, 1 up)
to arrive at P (2 forward, 1 right, 1 up). Arithmetically
this is accomplished as

P = nR × T ÷ V

(−2,−1, 1) = (0, 0, 0) + (−2, 2, 1)− (0, 3, 0). (91)

Inversion is realized as a symmetric translation across
the origin and is illustrated in Fig. 10(b). Frequency f
with position 1 forward is the inversion of time t, 1 back;
for 3 left it is 3 right. For permeability at 2 back, 1 left,
1 down it is pressure (2 forward, 1 right, 1 up). For those
who think better in coordinate notation than in shapes,
just multiply the dimensional triad by −1, i.e.,

µ = P−1

(2, 1,−1) = −1× (−2,−1, 1). (92)

Powers of any dimension are multiples of that position.
For velocity v with position 1 forward, 1 left, the square is
v2 at 2 forward, 2 left. Figure 10(c) shows that mass stop-
ping power S/ρ (2 forward, 4 left) is derived by squaring
electric potential Vq (1 forward, 2 left), or as an arith-
metic operation

S/ρ = V 2
q

(−2, 4, 0) = 2× (−1, 2, 0). (93)

Roots of any dimension are fractions of that position;
v at 1 forward, 1 left, is the square root of v2 (2 forward,
2 left) as shown in Fig. 10(d), or arithmetically

v =
√
v2

(−1, 1, 0) =
1
2
× (−2, 2, 0). (94)
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The cube root of volume (3 left) is distance (1 left). The
geometric mean of dimensions is the root of their product.
This is given as the geometric center of their positions
in the table. For energy (2 forward, 2 left, 1 up) and
inductance L (2 back, 2 left, 1 down), the geometric mean
is area (2 left); 2 forward and 2 back cancel out, and 1
up and 1 down cancel out. In coordinate terms this is

(E × L)1/2 = A

1
2
[(−2, 2, 1) + (2, 2,−1)] = (0, 2, 0). (95)

The geometric mean of the left hand side of Eq. (88) is
the origin. This can also be proven by constructing the
triangle µ, ε, and v2, and noting the intersection of the
lines originating from each apex and bisecting the side
opposite. Question: Is this intersection the square root
or the cube root?

V. CONCLUSIONS

What is a dimension? A dimension is any measurable
physical quantity. From the simple space metric given
by the Pythagorean distance formula in Eq. (1), to the
ordered Periodic Table of Dimensions presented in Fig.
9 which demonstrates geometric relations between physi-
cal phenomena, this discussion has been guided primarily

by the principles of geometry. By contracting the space
metric to the only kinematically relevant direction, that
of velocity, space and time can be expressed in equivalent
terms. The relations of these terms can be operated on
by the space-time metric in any of its forms. As indepen-
dent quantities expressed in like terms, space and time
form an orthogonal plane. Detailed geometric analyses
of kinematic functions in the space-time plane accurately
predict real physical phenomena. With the addition of
only one more measurable physical quantity, mass, or-
thogonal to the space-time plane, a geometric represen-
tation of over 1600 derived units reduced to 72 elements
brings to light a geometry of dimensional analysis. Each
of the elements is a measurable physical quantity derived
from the three primary axial quantities mass, space, and
time; all physical law can be derived from these elements
with geometric principles.

And direction? No, it does not imply dimension. “Di-
mensioned” is used as a verb when a technical drawing
is dimensioned in each direction. Under close scrutiny,
directions are found to combine in a different proportion
than do the primary physical qualities from which all
physical law can be derived. When dimension is used as
a noun to refer to measurable physical quantities, direc-
tion does not measure up to space, time, or mass. Then
in a formal discussion of direction versus dimension, it
must be said that direction does not imply dimension.
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